We use open-source computer algebra system(CAS) maxima 5.31.2. The trigtools package10 contains commands that help you work with trigonometric expessions. List of functions in trigtools package:
The function c2sin converts the expression \(a\cos x + b\sin x\) to \(r\sin(x+\phi).\)
The function c2cos converts the expression \(a\cos x + b\sin x\) to \(r\cos(x-\phi).\)
Examples:
(%i1) load("trigtools")$
(%i2) c2sin(3*sin(x)+4*cos(x));
                                            4
(%o2)                        5 sin(x + atan(-))
                                            3
(%i3) trigexpand(%),expand;
(%o3)                        3 sin(x) + 4 cos(x)
(%i4) c2cos(3*sin(x)-4*cos(x));
                                             3
(%o4)                       - 5 cos(x + atan(-))
                                             4
(%i5) trigexpand(%),expand; (%o5) 3 sin(x) - 4 cos(x)
(%i6) c2sin(sin(x)+cos(x));
                                            %pi
(%o6)                       sqrt(2) sin(x + ---)
                                             4
(%i7) trigexpand(%),expand;
(%o7)                          sin(x) + cos(x)
(%i8) c2cos(sin(x)+cos(x));
                                            %pi
(%o8)                       sqrt(2) cos(x - ---)
                                             4
(%i9) trigexpand(%),expand; (%o9) sin(x) + cos(x)
Example. Solve trigonometric equation
(%i10) eq:3*sin(x)+4*cos(x)=2; (%o10) 3 sin(x) + 4 cos(x) = 2
(%i11) plot2d([3*sin(x)+4*cos(x),2],[x,-%pi,%pi]);
 
(%i12) eq1:c2sin(lhs(eq))=2;
                                           4
(%o35)                      5 sin(x + atan(-)) = 2
                                           3
(%i13) solvetrigwarn:false$
(%i14) solve(eq1)[1]$ x1:rhs(%);
                                    2         4
(%o15)                         asin(-) - atan(-)
                                    5         3
(%i16) float(%), numer;
(%o39)                       - 0.5157783719341241
(%i17) eq2:c2cos(lhs(eq))=2;
                                           3
(%o17)                      5 cos(x - atan(-)) = 2
(%i18) solve(eq2,x)[1]$ x2:rhs(%);
                                    3         2
(%o19)                         atan(-) + acos(-)
                                    4         5
(%i20) float(%), numer;
(%o20)                         1.802780589520693
(%i21) sol:[x1,x2];
                          2         4        3         2
(%o44)              [asin(-) - atan(-), atan(-) + acos(-)]
                          5         3        4         5
Answ.: \(x = x_1 + 2\pi k,\) \(x_1 = \sin^{-1}{2\over 5} - \tan^{-1}{4\over 3},\) or \(x_1 = \tan^{-1}{3\over 4} + \cos^{-1}{2\over 5},\) for \(k\) any integer.
The function c2trig (convert to trigonometric) reduce expression with hyperbolic functions sinh, cosh, tanh, coth to trigonometric expression with sin, cos, tan, cot.
Examples:
(%i1) load(trigtools)$ (%i2) sinh(x)=c2trig(sinh(x)); cosh(x)=c2trig(cosh(x)); tanh(x)=c2trig(tanh(x)); coth(x)=c2trig(coth(x)); (%o2) sinh(x) = - %i sin(%i x) (%o3) cosh(x) = cos(%i x) (%o4) tanh(x) = - %i tan(%i x) (%o5) coth(x) = %i cot(%i x)
(%i6) cos(p+q*%i); (%o6) cos(%i q + p) (%i7) trigexpand(%); (%o7) cos(p) cosh(q) - %i sin(p) sinh(q) (%i8) c2trig(%); (%o8) cos(%i q + p)
(%i9) sin(a+b*%i); (%o9) sin(%i b + a) (%i10) trigexpand(%); (%o10) %i cos(a) sinh(b) + sin(a) cosh(b) (%i11) c2trig(%); (%o11) sin(%i b + a)
(%i12) cos(a*%i+b*%i); (%o12) cos(%i b + %i a) (%i13) trigexpand(%); (%o13) sinh(a) sinh(b) + cosh(a) cosh(b) (%i14) c2trig(%); (%o14) cos(%i b + %i a)
(%i15) tan(a+%i*b); (%o15) tan(%i b + a)
(%i16) trigexpand(%);
                              %i tanh(b) + tan(a)
(%o16)                       ---------------------
                             1 - %i tan(a) tanh(b)
(%i17) c2trig(%); (%o217) tan(%i b + a)
(%i18) cot(x+%i*y);
(%o18)                           cot(%i y + x)
(%i19) trigexpand(%);
                           (- %i cot(x) coth(y)) - 1
(%o19)                     -------------------------
                              cot(x) - %i coth(y)
(%i20) c2trig(%);
(%o20)                           cot(%i y + x)
The function c2hyp (convert to hyperbolic) convert expression with exp function to expression with hyperbolic functions sinh, cosh.
Examples:
(%i6) c2hyp(exp(x));
(%o6)                         sinh(x) + cosh(x)
(%i7) c2hyp(exp(x)+exp(x^2)+1);
                       2          2
(%o7)            sinh(x ) + cosh(x ) + sinh(x) + cosh(x) + 1
(%i8) c2hyp(exp(x)/(2*exp(y)-3*exp(z)));
                              sinh(x) + cosh(x)
(%o8)           ---------------------------------------------
                2 (sinh(y) + cosh(y)) - 3 (sinh(z) + cosh(z))
The function trigfactor factors expresions of form \(\pm \sin x \pm \cos y.\)
Examples:
(%i2) trigfactor(sin(x)+cos(x));
                                            %pi
(%o2)                       sqrt(2) cos(x - ---)
                                             4
(%i3) trigrat(%);
(%o3)                          sin(x) + cos(x)
(%i4) trigfactor(sin(x)+cos(y));
                           y   x   %pi      y   x   %pi
(%o4)                2 cos(- - - + ---) cos(- + - - ---)
                           2   2    4       2   2    4
(%i5) trigrat(%); (%o5) cos(y) + sin(x)
(%i6) trigfactor(sin(x)-cos(3*y));
                         3 y   x   %pi      3 y   x   %pi
(%o6)              2 sin(--- - - + ---) sin(--- + - - ---)
                          2    2    4        2    2    4
(%i7) trigrat(%);
(%o7)                         sin(x) - cos(3 y)
(%i8) trigfactor(-sin(5*x)-cos(3*y));
                        3 y   5 x   %pi      3 y   5 x   %pi
(%o8)           - 2 cos(--- - --- + ---) cos(--- + --- - ---)
                         2     2     4        2     2     4
(%i9) trigrat(%);
(%o9)                      (- cos(3 y)) - sin(5 x)
(%i10) sin(alpha)+sin(beta)=trigfactor(sin(alpha)+sin(beta));
                                       beta   alpha      beta   alpha
(%o10)  sin(beta) + sin(alpha) = 2 cos(---- - -----) sin(---- + -----)
                                        2       2         2       2
(%i11) trigrat(%); (%o78) sin(beta) + sin(alpha) = sin(beta) + sin(alpha)
(%i12) sin(alpha)-sin(beta)=trigfactor(sin(alpha)-sin(beta));
                                        beta   alpha      beta   alpha
(%o12) sin(alpha) - sin(beta) = - 2 sin(---- - -----) cos(---- + -----)
                                         2       2         2       2
(%i13) cos(alpha)+cos(beta)=trigfactor(cos(alpha)+cos(beta));
                                       beta   alpha      beta   alpha
(%o80)  cos(beta) + cos(alpha) = 2 cos(---- - -----) cos(---- + -----)
                                        2       2         2       2
(%i14) cos(alpha)-cos(beta)=trigfactor(cos(alpha)-cos(beta));
                                       beta   alpha      beta   alpha
(%o14)  cos(alpha) - cos(beta) = 2 sin(---- - -----) sin(---- + -----)
                                        2       2         2       2
(%i15) trigfactor(3*sin(x)+7*cos(x)); (%o15) 3 sin(x) + 7 cos(x)
(%i16) c2sin(%);
                                                 7
(%o16)                     sqrt(58) sin(x + atan(-))
                                                 3
(%i17) trigexpand(%),expand; (%o17) 3 sin(x) + 7 cos(x)
10.
(%i18) trigfactor(sin(2*x)); (%o18) sin(2 x) (%i19) trigexpand(%); (%o19) 2 cos(x) sin(x)
The function trigsolve find solutions of trigonometric equation from interval \([a,b)\) .
Examples:
(%i38) eq:eq:3*sin(x)+4*cos(x)=2; (%o38) 3 sin(x) + 4 cos(x) = 2 (%i39) plot2d([3*sin(x)+4*cos(x),2],[x,-%pi,%pi]);
 
(%o39)
(%i40) sol:trigsolve(eq,-%pi,%pi);
                  2 sqrt(21)   12              2 sqrt(21)   12
(%o40)      {atan(---------- - --), %pi - atan(---------- + --)}
                      5        5                   5        5
(%i41) float(%), numer;
(%o41)            {- 0.5157783719341241, 1.802780589520693}
Answ. : \(x = \tan^{-1}\left({2\sqrt{21}\over 5} - {12\over 5}\right) + 2\pi k\) ; \(x = \pi - \tan^{-1}\left({2\sqrt{21}\over 5} + {12\over 5}\right) + 2\pi k,\) \(k\) – any integer.
(%i6) eq:cos(3*x)-sin(x)=sqrt(3)*(cos(x)-sin(3*x)); (%o6) cos(3 x) - sin(x) = sqrt(3) (cos(x) - sin(3 x)) (%i7) plot2d([lhs(eq)-rhs(eq)], [x,0,2*%pi])$
 
We have 6 solutions from [0, 2*pi].
(%i8) plot2d([lhs(eq)-rhs(eq)], [x,0.2,0.5]);
 
(%i9) plot2d([lhs(eq)-rhs(eq)], [x,3.3,3.6]);
 
(%i10) trigfactor(lhs(eq))=map(trigfactor,rhs(eq));
                   %pi            %pi                      %pi            %pi
(%o15) - 2 sin(x + ---) sin(2 x - ---) = 2 sqrt(3) sin(x - ---) sin(2 x - ---)
                    4              4                        4              4
(%i11) factor(lhs(%)-rhs(%));
                 4 x + %pi                4 x - %pi       8 x - %pi
(%o11)  - 2 (sin(---------) + sqrt(3) sin(---------)) sin(---------)
                     4                        4               4
Equation is equivalent to
(%i12) L:factor(rhs(%)-lhs(%));
                4 x + %pi                4 x - %pi       8 x - %pi
(%o12)   2 (sin(---------) + sqrt(3) sin(---------)) sin(---------)
                    4                        4               4
(%i13) eq1:part(L,2)=0;
                     4 x + %pi                4 x - %pi
(%o13)           sin(---------) + sqrt(3) sin(---------) = 0
                         4                        4
(%i14) eq2:part(L,3)=0;
                                 8 x - %pi
(%o14)                       sin(---------) = 0
                                     4
(%i15) S1:trigsolve(eq1,0,2*%pi);
                                 %pi  13 %pi
(%o15)                         {---, ------}
                                 12     12
(%i16) S2:trigsolve(eq2,0,2*%pi);
                           %pi  5 %pi  9 %pi  13 %pi
(%o16)                   {---, -----, -----, ------}
                            8     8      8      8
(%i17) S:listify(union(S1,S2));
                   %pi  %pi  5 %pi  13 %pi  9 %pi  13 %pi
(%o17)            [---, ---, -----, ------, -----, ------]
                   12    8     8      12      8      8
(%i18) float(%), numer;
(%o18) [0.2617993877991494, 0.3926990816987241, 1.963495408493621, 
                      3.403392041388942, 3.534291735288517, 5.105088062083414]
Answer: \(x = a + 2\pi k,\) where \(a\) any from \(S\), \(k\) any integer.
(%i19) eq:8*cos(x)*cos(4*x)*cos(5*x)-1=0; (%o19) 8 cos(x) cos(4 x) cos(5 x) - 1 = 0 (%i20) trigrat(%); (%o20) 2 cos(10 x) + 2 cos(8 x) + 2 cos(2 x) + 1 = 0
Left side is periodic with period \(T=\pi\) .
We have 10 solutions from [0, pi].
(%i21) plot2d([lhs(eq),rhs(eq)],[x,0,%pi]);
 
(%i22) x4:find_root(eq, x, 1.3, 1.32); (%o22) 1.308996938995747 (%i23) x5:find_root(eq, x, 1.32, 1.35); (%o23) 1.346396851538483 (%i24) plot2d([lhs(eq),0], [x,1.3,1.35], [gnuplot_preamble, "set grid;"]);
 
Equation we multiply by \(2\sin x\cos 2x\) :
(%i25) eq*2*sin(x)*cos(2*x); (%o25) 2 sin(x) cos(2 x) (8 cos(x) cos(4 x) cos(5 x) - 1) = 0 (%i26) eq1:trigreduce(%),expand; (%o26) sin(13 x) + sin(x) = 0
(%i27) trigfactor(lhs(eq1))=0; (%o27) 2 cos(6 x) sin(7 x) = 0
(%i28) S1:trigsolve(cos(6*x),0,%pi);
                    %pi  %pi  5 %pi  7 %pi  3 %pi  11 %pi
(%o28)             {---, ---, -----, -----, -----, ------}
                    12    4    12     12      4      12
(%i29) S2:trigsolve(sin(7*x),0,%pi);
                     %pi  2 %pi  3 %pi  4 %pi  5 %pi  6 %pi
(%o29)           {0, ---, -----, -----, -----, -----, -----}
                      7     7      7      7      7      7
We remove solutions of \(\sin x = 0\) and \(\cos 2x = 0.\)
(%i30) S3:trigsolve(sin(x),0,%pi);
(%o30)                               {0}
(%i31) S4:trigsolve(cos(2*x),0,%pi);
                                 %pi  3 %pi
(%o31)                          {---, -----}
                                  4     4
We find 10 solutions from \([0, \pi]\) :
(%i32) union(S1,S2)$ setdifference(%,S3)$ setdifference(%,S4);
         %pi  %pi  2 %pi  5 %pi  3 %pi  4 %pi  7 %pi  5 %pi  6 %pi  11 %pi
(%o34) {---, ---, -----, -----, -----, -----, -----, -----, -----, ------}
         12    7     7     12      7      7     12      7      7      12
(%i35) S:listify(%);
        %pi  %pi  2 %pi  5 %pi  3 %pi  4 %pi  7 %pi  5 %pi  6 %pi  11 %pi
(%o35) [---, ---, -----, -----, -----, -----, -----, -----, -----, ------]
        12    7     7     12      7      7     12      7      7      12
(%i36) length(S); (%o36) 10 (%i37) float(S), numer; (%o37) [0.2617993877991494, 0.4487989505128276, 0.8975979010256552, 1.308996938995747, 1.346396851538483, 1.79519580205131, 1.832595714594046, 2.243994752564138, 2.692793703076966, 2.879793265790644]
Answer: \(x = a + 2\pi k,\) where \(a\) any from \(S\), \(k\) any integer.
The function trigvalue compute values of \(\sin {m\pi\over n},\) \(\cos {m\pi\over n},\) \(\tan {m\pi\over n},\) and \(\cot {m\pi\over n}\) in radicals.
The function trigeval compute values of expressions with \(\sin {m\pi\over n},\) \(\cos {m\pi\over n},\) \(\tan {m\pi\over n},\) and \(\cot {m\pi\over n}\) in radicals.
Examples:
(%i1) load(trigtools)$
(%i2) trigvalue(sin(%pi/10));
                                  sqrt(5) - 1
(%o2)                             -----------
                                       4
(%i3) trigvalue(cos(%pi/10));
                               sqrt(sqrt(5) + 5)
(%o3)                          -----------------
                                      3/2
                                     2
(%i4) trigvalue(tan(%pi/10));
                              sqrt(5 - 2 sqrt(5))
(%o4)                         -------------------
                                    sqrt(5)
(%i5) float(%), numer;
(%o5)                         0.3249196962329063
(%i6) float(tan(%pi/10)), numer;
(%o6)                         0.3249196962329063
(%i7) trigvalue(cot(%pi/10));
(%o7)                         sqrt(2 sqrt(5) + 5)
(%i8) float(%), numer;
(%o8)                          3.077683537175254
(%i9) float(cot(%pi/10)), numer;
(%o9)                          3.077683537175254
(%i10) trigvalue(sin(%pi/32));
                     sqrt(2 - sqrt(sqrt(sqrt(2) + 2) + 2))
(%o10)               -------------------------------------
                                       2
(%i11) trigvalue(cos(%pi/32));
                     sqrt(sqrt(sqrt(sqrt(2) + 2) + 2) + 2)
(%o11)               -------------------------------------
                                       2
(%i12) trigvalue(cos(%pi/256));
       sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(sqrt(2) + 2) + 2) + 2) + 2) + 2) + 2)
(%o12) -------------------------------------------------------------------
                                        2
(%i13) trigvalue(cos(%pi/60));
        sqrt(sqrt(sqrt(2) sqrt(3) sqrt(sqrt(5) + 5) + sqrt(5) + 7) + 4)
(%o13)  ---------------------------------------------------------------
                                      3/2
                                     2
(%i14) trigvalue(sin(%pi/60));
        sqrt(4 - sqrt(sqrt(2) sqrt(3) sqrt(sqrt(5) + 5) + sqrt(5) + 7))
(%o14)  ---------------------------------------------------------------
                                      3/2
                                     2
(%i15) trigvalue(sin(%pi/18));
                                       %pi
(%o15)                             sin(---)
                                       18
(%i16) trigvalue(sin(%pi/20));
                      sqrt(4 - sqrt(2) sqrt(sqrt(5) + 5))
(%o16)                -----------------------------------
                                      3/2
                                     2
(%i17) load(odes)$
(%i18) eq:'diff(y,x,5)+2*y=0;
                                  5
                                 d y
(%o18)                           --- + 2 y = 0
                                   5
                                 dx
(%i19) odeL(eq,y,x);
                   1/5     4 %pi
                - 2    cos(-----) x
                             5           1/5     4 %pi
(%o19) y = C5 %e                    sin(2    sin(-----) x)
                                                   5
           1/5     4 %pi
        - 2    cos(-----) x
                     5           1/5     4 %pi
 + C4 %e                    cos(2    sin(-----) x)
                                           5
           1/5     2 %pi
        - 2    cos(-----) x
                     5           1/5     2 %pi
 + C3 %e                    sin(2    sin(-----) x)
                                           5
           1/5     2 %pi
        - 2    cos(-----) x                                  1/5
                     5           1/5     2 %pi            - 2    x
 + C2 %e                    cos(2    sin(-----) x) + C1 %e
                                           5
(%i20) sol:trigeval(%);
                  (sqrt(5) - 1) x
                - ---------------
                        9/5
                       2              sqrt(sqrt(5) + 5) x
(%o20) y = C3 %e                  sin(-------------------)
                                             13/10
                                            2
          (sqrt(5) - 1) x
        - ---------------
                9/5
               2              sqrt(sqrt(5) + 5) x
 + C2 %e                  cos(-------------------)
                                     13/10
                                    2
        (sqrt(5) + 1) x
        ---------------
              9/5
             2              sqrt(5 - sqrt(5)) x
 + C5 %e                sin(-------------------)
                                   13/10
                                  2
        (sqrt(5) + 1) x
        ---------------
              9/5                                          1/5
             2              sqrt(5 - sqrt(5)) x         - 2    x
 + C4 %e                cos(-------------------) + C1 %e
                                   13/10
                                  2
(%i21) subst(sol,eq)$ (%i22) ev(%, nouns)$ (%i23) radcan(%); (%o23) 0 = 0
Example. Find the 4-th roots of %i
(%i24) solve(x^4=%i,x);
                 1/8                1/8             1/8              1/8
(%o24) [x = (- 1)    %i, x = - (- 1)   , x = - (- 1)    %i, x = (- 1)   ]
(%i25) rectform(%);
                   %pi        %pi                 %pi         %pi
(%o25) [x = %i cos(---) - sin(---), x = (- %i sin(---)) - cos(---), 
                    8          8                   8           8
                                %pi           %pi              %pi        %pi
                        x = sin(---) - %i cos(---), x = %i sin(---) + cos(---)]
                                 8             8                8          8
(%i26) trigeval(%);
            sqrt(sqrt(2) + 2) %i   sqrt(2 - sqrt(2))
(%o26) [x = -------------------- - -----------------, 
                     2                     2
       sqrt(2 - sqrt(2)) %i    sqrt(sqrt(2) + 2)
x = (- --------------------) - -----------------, 
                2                      2
    sqrt(2 - sqrt(2))   sqrt(sqrt(2) + 2) %i
x = ----------------- - --------------------, 
            2                    2
    sqrt(2 - sqrt(2)) %i   sqrt(sqrt(2) + 2)
x = -------------------- + -----------------]
             2                     2
The function atan_contract(r) contracts atan functions. We assume: \(|r| < {\pi\over 2}.\)
Examples:
(%i1) load(trigtools)$
(%i2) atan_contract(atan(x)+atan(y));
(%o2)                          atan(y) + atan(x)
(%i3) assume(abs(atan(x)+atan(y))<%pi/2)$
(%i4) atan(x)+atan(y)=atan_contract(atan(x)+atan(y));
                                                 y + x
(%o4)                  atan(y) + atan(x) = atan(-------)
                                                1 - x y
(%i5) atan(1/3)+atan(1/5)+atan(1/7)+atan(1/8)$ %=atan_contract(%);
                       1         1         1         1    %pi
(%o6)             atan(-) + atan(-) + atan(-) + atan(-) = ---
                       3         5         7         8     4
(%i7) 4*atan(1/5)-atan(1/239)=atan_contract(4*atan(1/5)-atan(1/239));
                                 1          1     %pi
(%o7)                     4 atan(-) - atan(---) = ---
                                 5         239     4
(%i8) 12*atan(1/49)+32*atan(1/57)-5*atan(1/239)+12*atan(1/110443)$
%=atan_contract(%);
                1             1             1               1       %pi
(%o9)   12 atan(--) + 32 atan(--) - 5 atan(---) + 12 atan(------) = ---
                49            57           239            110443     4
This is a conversion by hand of the original “trigtools-doc.pdf” file in “share/contrib/trigtools”, by Raymond Toy. See the pdf for the definitive version.