
Interpreting OpenEXR Deep Pixels
Florian Kainz, Industrial Light & Magic

Updated March 14, 2018

Overview 
Starting with version 2.0, the OpenEXR image file format supports deep images.  In
a  regular,  or  flat  image,  every pixel  stores  at  most  one value per  channel.   In
contrast, each pixel in a deep image can store an arbitrary number of values or
samples per channel.  Each of those samples is associated with a depth, or distance
from the viewer. Together with the two-dimensional pixel raster,  the samples at
different depths form a three-dimensional data set.  

The open-source OpenEXR file I/O library defines the file format for deep images,
and  it  provides  convenient  methods  for  reading  and  writing  deep  image  files.
However, the library does not define how deep images are meant to be interpreted.
In  order  to  encourage  compatibility  among  application  programs  and  image
processing libraries, this document describes a standard way to represent point and
volume samples in deep images, and it defines basic compositing operations such
as merging two deep images or converting a deep image into a flat image.
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Definitions

Flat and Deep Images, Samples 
For a single-part OpenEXR file an image is the set of all channels in the file.  For a
multi-part file an image is the set of all channels in the same part of the file.  

A flat image has at most one stored value or sample per pixel per channel.  The
most common case is an RGB image, which contains three channels,  and every
pixel has exactly one R, one G and one B sample.  Some channels in a flat image
may be sub-sampled,  as  is  the case  with  luminance-chroma images,  where the
luminance channel  has a sample at  every pixel,  but  the chroma channels  have
samples only at every second pixel of every second scan line.  

A  deep image can store an unlimited number of samples per pixel, and each of
those samples is associated with a depth, or distance from the viewer.  

A pixel at pixel space location  (x , y ) in a deep image has  n(x , y) samples in each
channel.  The number of samples varies from pixel to pixel, and any non-negative
number of samples, including zero, is allowed.  However, all channels in a single
pixel have the same number of samples.

The samples in each channel are numbered from 0 to n(x , y)−1, and the expression

Si(c , x , y ) refers to sample number i in channel c of the pixel at location (x , y ).  

In the following we will for the most part discuss a single pixel.  For readability we

will  omit the coordinates of the pixel; expressions such as  n and  Si(c ) are to be

understood as n(x , y) and Si(c , x , y ) respectively.  

Channel Names and Layers 
The channels  in  an image have names that  serve two purposes:  specifying the
intended interpretation of each channel, and grouping the channels into layers.  

If a channel name contains one or more periods, then the part of the channel name
that  follows the last  period is  the  base name.   If  a channel  name contains no
periods, then the entire channel name is the base name.  

[Examples: the base name of channel R is R; the base name of channel L1.L2.R is
R.] 

If a channel name contains one or more periods, then the part of the channel name
before the last period is the channel's layer name.  If a channel name contains no
periods, then the layer name is an empty string.  
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[Examples: the layer name of channel  R is the empty string; the layer name of
channel L1.L2.R is L1.L2.] 

The set of all  channels in an image that share the same layer name is called a
layer.  

The set of all channels in an image whose layer name is the empty string is called
the base layer.  

If the name of one layer is a prefix of the name of another layer, then the first layer
encloses the second layer, and the second layer is nested in the first layer.  Since
the empty string is a prefix of any other string, the base layer encloses all other
layers.  

A layer directly encloses a second layer if there is no third layer that is nested in
the first layer and encloses the second layer.  

[Examples:  layer  L1 encloses  layers  L1.L2 and  L1.L2.L3.   Layer  L1  directly
encloses layer L1.L2, but L1 does not directly enclose L1.L2.L3.] 

Alpha, Color, Depth and Auxiliary Channels 
A channel whose base name is A, AR, AG or AB is an alpha channel.  All samples
must be greater than or equal to zero, and less than or equal to one.

A channel whose base name is R, G, B, or Y  is a color channel.  

A channel whose full name is  Z or  ZBack, is a  depth channel.  All samples in a
depth channel must be greater than or equal to zero.

A channel that is not an alpha, color or depth channel is an auxiliary channel.

Required Depth Channels
The base layer of a deep image must include a depth channel that is called Z.  

The base layer of a deep image may include a depth channel called ZBack.  If the
base layer does not include one, then a ZBack channel can be generated by copying
the Z channel.

Layers other than the base layer may include channels called Z or ZBack, but those
channels are auxiliary channels and do not determine the positions of any samples
in the image.

Sample Locations, Point and Volume Samples
The depth samples Si (Z ) and Si(ZBack) determine the positions of the front and the

back of sample number i in all other channels in the same pixel.

4



If  Si (Z )≥Si (ZBack ),  then sample number  i in  all  other  channels  covers  the single

depth value z=Si (Z ), where z is the distance of the sample from the viewer.  Sample

number i is called a point sample.

If  Si (Z )<Si (ZBack ), then sample number i in all other channels covers the half open

interval  Si (Z )≤ z<Si (ZBack ).  Sample number  i is called a  volume sample.  Si (Z ) is

the sample’s front andSi (ZBack ) is the sample’s back.

Point samples are used to represent the intersections of surfaces with a pixel.  A
surface intersects a pixel at a well-defined distance from the viewer, but the surface
has zero thickness.   Volume samples are used to represent  the intersections of
volumes with a pixel.

Required Alpha Channels
Every color or auxiliary channel in a deep image must have an associated alpha
channel.

The associated alpha channel for a given color or auxiliary channel,  c, is found by
looking for a matching alpha channel (see below), first in the layer that contains c,
then in the directly enclosing layer,  then in the layer that directly encloses that
layer, and so on, until the base layer is reached.  The first matching alpha channel
found this way becomes the alpha channel that is associated with c.

Each  color  our  auxiliary  channel  matches  an  alpha  channel,  as  shown  in  the
following table:

Color  or  auxiliary  channel  base
name

Matching alpha channel base name

 R  AR if it exists, otherwise A
 G  AG if it exists, otherwise A
 B  AB if it exists, otherwise A
 Y   A 
(any auxiliary channel)  A 

[Example: The following table shows the list of channels in a deep image, and the
associated alpha channel for each color or auxiliary channel.

Channel name Associated alpha channel

 A  
 AR  
 AG 
 R  AR 
 Z  
 L1. A  

5



 L1. AR  
 L1.R  L1. AR 
 L1.G  L1.A 
 L1.L2.G  L1. A 

]

Sorted, Non-Overlapping and Tidy Images
The samples in a pixel  may or  may not be sorted according to depth,  and the
sample depths or depth ranges may or may not overlap each other.

A pixel in a deep image is sorted if for every i and j with i < j,

Si (Z )<S j (Z )∨(Si (Z )=S j (Z )∧S i (ZBack )≤S j (ZBack ) ) .

A pixel in a deep image is non-overlapping if for every i and j with i≠ j,

(Si (Z )<S j (Z )∧Si (ZBack )≤S j (Z ) )∨(S j (Z )<S i (Z )∧S j (ZBack )≤S i (Z ) )∨¿

(Si (Z )=S j (Z )∧S i (ZBack )≤S i (Z )∧S j (ZBack )>S j (Z ) )∨¿

(S j (Z )=Si (Z )∧S j (ZBack )≤S j (Z )∧Si (ZBack )>Si (Z ) ) .

A pixel in a deep image is tidy if it is sorted and non-overlapping.

A deep image is sorted if all of its pixels are sorted; it is non-overlapping if all of its
pixels are non-overlapping; and it is tidy if all of its pixels are tidy.

The images stored in an OpenEXR file are not required to be tidy.  Some deep
image processing operations,  for  example, flattening a deep image, require tidy
input images.  However, making an image tidy loses information, and some kinds of
data  cannot  be represented with  tidy images,  for  example,  object  identifiers  or
motion vectors for volume objects that pass through each other.

Some application programs that read deep images can run more efficiently with tidy
images.  For example, in a 3D renderer that uses deep images as shadow maps,
shadow  lookups  are  faster  if  the  samples  in  each  pixel  are  sorted  and  non-
overlapping.

Application  programs that  write  deep OpenEXR files  can  add a deepImageState
attribute to the header to let file readers know if the pixels in the image are tidy or
not.  The attribute is of type DeepImageState, and can have the following values:

Value Interpretation

MESSY Samples may not be sorted, and overlaps are possible.
SORTED Samples are sorted, but overlaps are possible.
NON_OVERLAPPING Samples do not overlap, but may not be sorted.
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TIDY Samples are sorted and do not overlap.

If the header does not contain a deepImageState attribute, then file readers should
assume that the image is MESSY.  The OpenEXR file I/O library does not verify that
the  samples  in  the  pixels  are  consistent  with  the  deepImageState  attribute.
Application software that handles deep images may assume that the attribute value
is  valid,  as  long  as  the  software  will  not  crash  or  lock  up  if  any  pixels  are
inconsistent with the deepImageState.

Alpha and Color as Functions of Depth
Given a color channel, c, and its associated alpha channel, α , the samples Si (c ), Si (α )

,  Si (Z ) and  Si (ZBack ) together represent the intersection of an object with a pixel.

The color of the object is Si (c ), its opacity is Si (α ), and the distances of its front and

back from the viewer are indicated by Si (Z ) and Si (ZBack ) respectively.

One Sample
We now define two functions,  z⟼α i(z), and  z⟼ c i(z ), that represent the opacity

and color of the part of the object whose distance from the viewer is no more than z
.  In other words, we divide the object into two parts by splitting it at distance  z;
α i(z) and c i(z ) are the opacity and color of the part that is closer to the viewer.

For a point sample, α i(z) and c i(z ) are step functions:

α i ( z )={ 0, z<Si(Z )

Si (α ) , z≥S i(Z)

c i (z )={ 0, z<S i(Z )

S i (c ) , z ≥ Si(Z )

7



For a volume sample, we define a helper function x (z) that consists of two constant
segments and a linear ramp:

x (z )={
0, z≤S i (Z )

z−Si(Z)

S i (ZBack )−Si(Z)
, Si (Z )<z<Si(ZBack)

1, z≥S i (ZBack )

With this helper function, α i(z) and c i(z ) are defined as follows:

α i ( z )=1−(1−S i (α ) )
x(z )

c i (z )={S i (c ) ∙
αi ( z )

S i (α )
, Si (α )>0

S i ( c ) ∙ x ( z ) , Si (α )=0

Note that the second case in the definition of  c i (z ) is the limit of the first case as

Si (α ) approaches zero.

The figure below shows an example of  α i ( z ) and  c i (z ) for a volume sample.  Alpha

and color  are  zero up to  Z,  increase gradually between  Z and  ZBack, and then
remain constant.
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Whole Pixel
If a pixel is tidy, then we can define two functions,  z⟼ A( z), and  z⟼C (z), that
represent the total opacity and color of all objects whose distance from the viewer
is no more than z: if the distance z is inside a volume object, we split the object at z.
Then we use “over” operations to composite all objects that are no further away
than z.

Given a foreground object with opacity α f  and color c f , and a background object with

opacity α b and color cb, an “over” operation computes the total opacity and color, α
and  c,  that result from placing the foreground object in front of the background
object:

α=αf+(1−α f )∙ α b

c=c f+(1−α f ) ∙cb

We define two sets of helper functions:

Ai ( z )={ 0, i<0
A i−1 (S i (Z ) )+(1−A i−1 (S i (Z )) ) ∙ αi ( z ) , i≥0

C i ( z )={ 0, i<0
C i−1 (Si (Z ) )+(1−Ai−1 (Si (Z ) )) ∙ c i ( z ) , i≥0

With these helper functions, A ( z ) and C (z) look like this:

A ( z )={
A−1 ( z ) , z<S0(Z)

A i ( z ) , S i (Z )≤ z<S i+1(Z)

An−1 (z ) , Sn−1 (Z )≤ z
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C ( z )={
C−1 ( z ) , z<S0(Z)

Ci ( z ) , Si (Z )≤ z<Si+1(Z )

Cn−1 ( z ) , Sn−1 (Z )≤ z

The figure below shows an example of A(z ) and C (z).  Sample number i is a volume
sample; its  ZBack is greater than its Z.  Alpha and color increase gradually between
Z and ZBack and then remain constant.  Sample number i+1, whose Z and ZBack are
equal, is a point sample where alpha and color discontinuously jump to a new value.
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Basic Deep Image Operations
Given  the  definitions  above,  we  can  now  construct  a  few  basic  deep  image
processing operations.

Splitting a Volume Sample
Our first operation is splitting volume sample number i of a pixel at a given depth, z,
where

Si (Z )<z<S i (ZBack ) .

The operation replaces the original sample with two new samples.  If the first of
those new samples is composited over the second one, then the total opacity and
color are the same as in the original sample.

For the depth channels, the new samples are:

Si , new (Z )=S i (Z ) Si+ 1, new (Z )=z

Si , new (ZBack )=z Si+ 1, new (ZBack )=Si (ZBack )

For a color channel, c, and its associated alpha channel, α , the new samples are:

Si , new (α )=αi(z ) Si+ 1, new (α )=αi(S i (Z )+S i (ZBack )−z)

Si , new (c )=ci(z ) Si+ 1, new ( c )=c i (S i (Z )+S i (ZBack )−z )

If it is not done exactly right, splitting a sample can lead to large rounding errors for
the colors of the new samples when the opacity of the original sample is very small.
For C++ code that splits a volume sample in a numerically stable way, see page 19
of this document.

Merging Overlapping Samples
In order to make a deep image tidy, we need a procedure for merging two samples
that perfectly overlap each other.  Given two samples, i and j, with

Si (Z )=S j (Z )

and 

max (S i (Z ) , Si (ZBack ) )=max (S j (Z ) , S j (ZBack ) ) ,

we want to replace those samples with a single new sample that has an appropriate
opacity and color.
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For  two overlapping volume samples,  the opacity  and color  of  the new sample
should be the same as what one would get from splitting the original samples into a
very  large  number  of  shorter  sub-samples,  interleaving  the  sub-samples,  and
compositing them back together with a series of “over” operations.

For a color channel,  c, and its associated alpha channel,  α , we can compute the
opacity and color of the new sample as follows:

Si , new (α )=1−(1−Si(α)) ∙ (1−S j(α))

Si , new (c )={
Si (c )+S j(c)

2
, Si (α )=1∧S j (α )=1

S i ( c ) ,
S j (c ) ,

Si (α )=1∧S j (α )<1
Si (α )<1∧S j (α )=1

S i ( c) ∙ v i+S j(c) ∙ v j

w
, Si (α )<1∧S j (α )<1

where

uk={− log (1−Sk (α ) ) , Sk (α )>0

0, Sk (α )=0

vk={
uk

Sk (α )
, Sk (α )>0

1, Sk (α )=0

with k=i or k= j, and

w={
S i ,new (α )

ui+u j

, ui+u j≠0

1, ui+u j=0

Evaluating the expressions above directly can lead to large rounding errors when
the opacity of one or both of the input samples is very small.  For C++ code that

computesSi , new (α ) and  Si , new (c ) in  a  numerically  robust  way,  see  page  20 of  this

document.

For details on how the expressions for Si , new (α ) and Si , new (c ), can be derived, see Peter

Hillman’s paper, “Deep Sample Merging.”

Note that the expressions for computing Si , new (α ) and Si , new (c ) do not refer to depth at

all.   This  allows  us  to  reuse  the  same  expressions  for  merging  two  perfectly
overlapping (that is, coincident) point samples.
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A point sample cannot perfectly overlap a volume sample; therefore point samples
are never merged with volume samples.
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Example (horizontal lines are volume samples, vertical lines are point samples, and the numbers next to the lines are sample indices):
e– horizontal lines are point samples:

After splitting:

After merging:

Making an Image Tidy
An image is made tidy by making each of its pixels tidy.  A pixel is made tidy in
three steps:

1. Split partially overlapping samples: if there are indices i and j such sample i
is  either a point or  a  volume sample,  sample  j is  a  volume sample,  and

S j (Z )<S i (Z )<S j(ZBack), then split sample j at Si (Z ) as shown on page 11 of this

document.  Otherwise, if there are indices i and j such that samples i and j

are volume samples,  and  S j (Z )<S i (ZBack )<S j(ZBack),  then split  sample  j at

Si (ZBack ).  Repeat this until there are no more partially overlapping samples.

2. Merge overlapping samples: if there are indices i and j such that samples i
and j overlap perfectly, then merge those two samples as shown in “Merging
Overlapping Samples,” above.  Repeat this until there are no more perfectly
overlapping samples.

3. Sort the samples according to  Z and  ZBack (see “Sorted, Non-Overlapping
and Tidy Images” on page 6).
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After sorting:

Note that this procedure can be made more efficient by first sorting the samples,
and then splitting and merging overlapping samples in a single front-to-back sweep
through the sample list.

Merging two Images
Merging two deep images forms a new deep image that represents all of the objects
contained in both of the original images.  Conceptually, the deep image “merge”
operation is similar to the “over” operation for flat images, except that the “merge”
operation does not distinguish between a foreground and a background image.

Since deep images are not required to be tidy, the “merge” operation is trivial: for
each output pixel, concatenate the sample lists of the corresponding input pixels.

Flattening an Image
Flattening produces a flat image from a deep image by performing a front-to-back
composite of the deep image samples.  The “flatten” operation has two steps:

1. Make the deep image tidy.
2. For each pixel, composite sample 0 over sample 1.  Composite the result over

sample 2, and so on, until sample n−1 is reached.

Note that this is equivalent to computing A (max (Sn−1 (Z ) , Sn−1 (ZBack ) ) ) for each

alpha  channel  and  C (max (Sn−1 (Z ) , Sn−1 (ZBack ) )) for  each  color  or  auxiliary

channel.

There is no single “correct” way to flatten the depth channels.  The most useful way
to handle  Z and  ZBack depends on how the flat image will be used.  Possibilities
include, among others:

 Flatten the Z channel as if it was a color channel, using A as the associated
alpha channel.  For volume samples, replace  Z with the average of  Z and
ZBack before flattening.  Either discard the ZBack channel, or use the back of

the  last  sample,  max (Sn−1 (Z ) , Sn−1 (ZBack ) ),  as  the  ZBack value  for  the  flat

image.
 Treating A as the alpha channel associated with Z, find the depth where A(z )

becomes 1.0 and store that depth in the Z channel of the flat image.  If A(z )
never reaches 1.0, then store either infinity or the maximum possible finite
value in the flat image.
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 Treating A as the alpha channel associated with Z, copy the front of the first
sample with non-zero alpha and the front of the first opaque sample into the
Z and ZBack channels of the flat image.
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computed  for both samples

true  of “dense fog” sample

true  of “light fog” sample

Opaque Volume Samples
Volume samples represent regions along the z axis of a pixel that are filled with a
medium that absorbs light and also emits light towards the camera.  The intensity
of  light  traveling  through  the  medium falls  off  exponentially  with  the  distance
traveled.  For example, if a one unit thick layer of fog absorbs half of the light and
transmits  the  rest,  then  a  two  unit  thick  layer  of  the  same  fog  absorbs  three
quarters of the light and transmits only one quarter.  Volume samples representing
these two layers would have alpha 0.5 and 0.75 respectively.  As the thickness of a
layer increases, the layer quickly becomes nearly opaque.  A fog layer that is twenty
units thick transmits less than one millionth of the light entering it, and its alpha is
0.99999905.  If alpha is represented using 16-bit floating-point numbers, then the
exact  value  will  be  rounded  to  1.0,  making  the  corresponding  volume  sample
completely opaque.  With 32-bit floating-point numbers, the alpha value for a 20
unit thick layer can still  be distinguished from 1.0, but for a 25 unit layer, alpha
rounds  to 1.0.   At  55 units,  alpha rounds to  1.0  even with  64-bit  floating-point
numbers.

Once a sample effectively becomes opaque, the true density of the light-absorbing
medium is lost.  A one-unit layer of a light fog might absorb half of the light while a
one-unit  layer  of  a dense fog might  absorb three quarters  of  the light,  but  the
representation of a 60-unit layer as a volume sample is exactly the same for the
light fog, the dense fog and a gray brick.  For a sample that extends from Z to ZBack
, the function α (z) evaluates to 1.0 for any z>Z .  Any object within this layer would
be completely hidden, no matter how close it was to the front of the layer.

Application software that writes deep images should avoid generating very deep
volume samples.  If the program is about to generate a sample with alpha close to
1.0, then it should split the sample into multiple sub-samples with a lower opacity
before storing the data in a deep image file.  This assumes, of course, that the
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software has an internal volume sample representation that can distinguish very
nearly opaque samples from completely opaque ones, so that splitting will produce
sub-samples with alpha significantly below 1.0.  
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Appendix: C++ Code

Splitting a Volume Sample

#include <algorithm>
#include <limits>
#include <cmath>
#include <cassert>

using namespace std;

void
splitVolumeSample
    (float   a, float   c,  // Opacity and color of original sample
     float  zf, float  zb,  // Front and back of original sample
     float   z,             // Position of split
     float& af, float& cf,  // Opacity and color of part closer than z
     float& ab, float& cb)  // Opacity and color of part further away than z
{
    //
    // Given a volume sample whose front and back are at depths zf and zb
    // respectively, split the sample at depth z.  Return the opacities
    // and colors of the two parts that result from the split.
    //
    // The code below is written to avoid excessive rounding errors when
    // the opacity of the original sample is very small:
    //
    // The straightforward computation of the opacity of either part
    // requires evaluating an expression of the form
    //
    //      1 - pow (1-a, x).
    //
    // However, if a is very small, then 1-a evaluates to 1.0 exactly,
    // and the entire expression evaluates to 0.0.
    //
    // We can avoid this by rewriting the expression as
    //
    //      1 - exp (x * log (1-a)),
    //
    // and replacing the call to log() with a call to the function log1p(),
    // which computes the logarithm of 1+x without attempting to evaluate
    // the expression 1+x when x is very small.
    //
    // Now we have
    //
    //      1 - exp (x * log1p (-a)).
    // 
    // However, if a is very small then the call to exp() returns 1.0, and
    // the overall expression still evaluates to 0.0.  We can avoid that
    // by replacing the call to exp() with a call to expm1():
    //
    //      -expm1 (x * log1p (-a))
    //
    // expm1(x) computes exp(x) - 1 in such a way that the result is accurate
    // even if x is very small.
    //

    assert (zb > zf && z >= zf && z <= zb);
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    a = max (0.0f, min (a, 1.0f));

    if (a == 1)
    {
        af = ab = 1;
        cf = cb = c;
    }
    else
    {
        float xf = (z - zf) / (zb - zf);
        float xb = (zb - z) / (zb - zf);

        if (a > numeric_limits<float>::min())
        {
            af = -expm1 (xf * log1p (-a));
            cf = (af / a) * c;

            ab = -expm1 (xb * log1p (-a));
            cb = (ab / a) * c;
        }
        else
        {
            af = a * xf;
            cf = c * xf;

            ab = a * xb;
            cb = c * xb;
        }
    }
}

Merging two Overlapping Samples

#include <algorithm>
#include <limits>
#include <cmath>
#include <cassert>

using namespace std;

void
mergeOverlappingSamples
    (float  a1, float  c1,  // Opacity and color of first sample
     float  a2, float  c2,  // Opacity and color of second sample
     float& am, float& cm)  // Opacity and color of merged sample
{
    //
    // This function merges two perfectly overlapping volume or point
    // samples.  Given the color and opacity of two samples, it returns
    // the color and opacity of the merged sample.
    //
    // The code below is written to avoid very large rounding errors when
    // the opacity of one or both samples is very small:
    //
    // * The merged opacity must not be computed as 1 - (1-a1) * (1-a2).
    //   If a1 and a2 are less than about half a floating-point epsilon,
    //   the expressions (1-a1) and (1-a2) evaluate to 1.0 exactly, and the
    //   merged opacity becomes 0.0.  The error is amplified later in the
    //   calculation of the merged color.
    //
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    //   Changing the calculation of the merged opacity to a1 + a2 - a1*a2
    //   avoids the excessive rounding error.
    //   
    // * For small x, the logarithm of 1+x is approximately equal to x,
    //   but log(1+x) returns 0 because 1+x evaluates to 1.0 exactly.
    //   This can lead to large errors in the calculation of the merged
    //   color if a1 or a2 is very small.
    //
    //   The math library function log1p(x) returns the logarithm of
    //   1+x, but without attempting to evaluate the expression 1+x
    //   when x is very small.
    //

    a1 = max (0.0f, min (a1, 1.0f));
    a2 = max (0.0f, min (a2, 1.0f));

    am = a1 + a2 - a1 * a2;

    if (a1 == 1 && a2 == 1)
    {
        cm = (c1 + c2) / 2;
    }
    else if (a1 == 1)
    {
        cm = c1;
    }
    else if (a2 == 1)
    {
        cm = c2;
    }
    else
    {
        static const float MAX = numeric_limits<float>::max();

        float u1 = -log1p (-a1);
        float v1 = (u1 < a1 * MAX)? u1 / a1: 1;

        float u2 = -log1p (-a2);
        float v2 = (u2 < a2 * MAX)? u2 / a2: 1;

        float u = u1 + u2;
        float w = (u > 1 || am < u * MAX)? am / u: 1;

        cm = (c1 * v1 + c2 * v2) * w;
    }
}
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